

Page 1 of 25

Report No.: LCSA120922075E

# FCC SDoC TEST REPORT

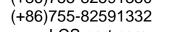
# Xiamen RGBlink Science & Technology Co., Ltd.

Meeting Streaming Solution

# Test Model: RGB20X-POE-TLY

Additional Model No.: Please Refer To Page 7

Prepared for Address


Prepared by Address

Tel Fax Web

Mail

Date of receipt of test sample Number of tested samples Samples number Date of Test Date of Report Xiamen RGBlink Science & Technology Co., Ltd.
Room 601A, No. 37-3 Banshang community, Building 3, Xinke Plaza, Torch Hi-Tech Industrial Development Zone, Xiamen, China

Shenzhen LCS Compliance Testing Laboratory Ltd. Room 101, 201, Building A and Room 301, Building C Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China (+86)755-82591330



: www.LCS-cert.com : webmaster@LCS-cert.com

December 12, 2022
1
A120922075
December 12, 2022 ~ December 15, 2022
December 16, 2022

FC





### FCC SDoC TEST REPORT FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014 Report Reference No. : LCSA120922075E Date Of Issue ..... : December 16, 2022 Testing Laboratory Name .... : Shenzhen LCS Compliance Testing Laboratory Ltd. Address ...... : Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China Testing Location/ Procedure ... : Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method Applicant's Name : Xiamen RGBlink Science & Technology Co., Ltd. Address ...... Room 601A, No. 37-3 Banshang community, Building 3, Xinke Plaza, Torch Hi-Tech Industrial Development Zone, Xiamen, China **Test Specification** FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI Standard..... C63.4 -2014 Test Report Form No. : LCSEMC-1.0 TRF Originator ...... : Shenzhen LCS Compliance Testing Laboratory Ltd. Master TRF..... : Dated 2011-03 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Test Item Description...... : Meeting Streaming Solution Test Model ..... : RGB20X-POE-TLY Trade Mark..... : RGBlink Ratings ..... : Please Refer to Page 7 Result ..... : Positive Compiled by: Supervised by: pproved by:

Cindy Nie

Ipn aron



Cindy Nie/ File administrators

Baron Wen/ Technique principal





Page 3 of 25

Report No.: LCSA120922075E

# FCC -- TEST REPORT

# Test Report No. : LCSA120922075E

December 16, 2022

Date of issue

| Test Model   | : RGB20X-POE-TLY                                                                                                    |            |
|--------------|---------------------------------------------------------------------------------------------------------------------|------------|
| EUT          | : Meeting Streaming Solution                                                                                        |            |
| Applicant    | : Xiamen RGBlink Science & Technology Co.                                                                           | ., Ltd.    |
| Address      | : Room 601A, No. 37-3 Banshang community, E<br>Xinke Plaza, Torch Hi-Tech Industrial Develop<br>Zone, Xiamen, China | •          |
| Telephone    | :/                                                                                                                  |            |
| Fax          | : /                                                                                                                 |            |
| Manufacturer | : Xiamen RGBlink Science & Technology Co.                                                                           | ., Ltd.    |
| Address      | : Room 601A, No. 37-3 Banshang community, E<br>Xinke Plaza, Torch Hi-Tech Industrial Develop<br>Zone, Xiamen, China |            |
| Telephone    |                                                                                                                     |            |
| Fax          | : /                                                                                                                 |            |
| -            | : Xiamen RGBlink Science & Technology Co.<br>: 5th floor, 205 Xinfeng Road, Huli District, Xiam<br>Fujian Province  |            |
| Telephone    | :/                                                                                                                  |            |
| Fax          | LCS Testing Lab                                                                                                     | esting Lab |

### Test Result according to the standards on page 6: Positive

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.





Page 4 of 25 R€

Report No.: LCSA120922075E

# **Revision History**

| Revision | Issue Date        | Revision content | Revised By |
|----------|-------------------|------------------|------------|
| 000      | December 16, 2022 | Initial Issue    | /          |
| ar th    |                   | 102-113          | 102-43     |
| tingLa   | 。 在闲检             | sing Lab         | ting Lab   |
| LCS TO   | ST LOS TO         |                  | LCS Test   |







# TABLE OF CONTENTS

| Test Report Description                        | Page |
|------------------------------------------------|------|
| 1. SUMMARY OF STANDARDS AND RESULTS            |      |
| 1.1. Description of Standards and Results      | 6    |
| 2. GENERAL INFORMATION                         | 7    |
| 2.1. Description of Device (EUT)               | 7    |
| 2.2. Support equipment List                    |      |
| 2.3. Description of Test Facility              |      |
| 2.4. Statement of the Measurement Uncertainty  |      |
| 2.5. Measurement Uncertainty                   | 9    |
| 3. TEST RESULTS                                |      |
| 3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT |      |
| 3.2. Radiated emission Measurement             |      |
| 4. PHOTOGRAPH                                  |      |
| 5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT     |      |



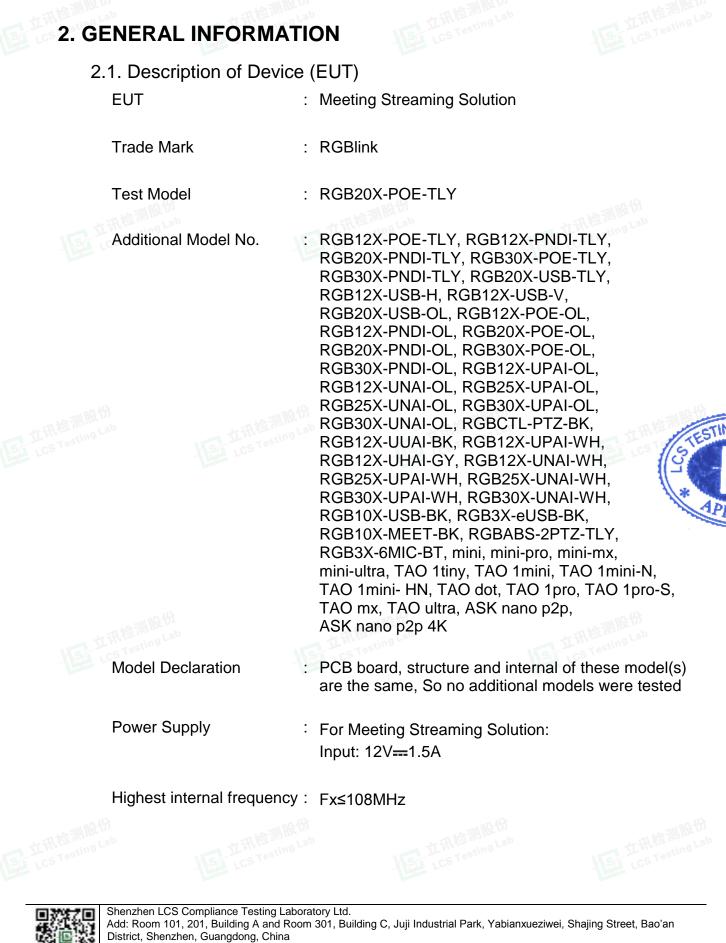




# 1. SUMMARY OF STANDARDS AND RESULTS

#### 1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.


|           |                      | EMISSION                                                         |                                                           |
|-----------|----------------------|------------------------------------------------------------------|-----------------------------------------------------------|
| s Results | Limits               | Standard                                                         | Description of Test Item                                  |
| PASS      |                      | FCC 47 CFR Part 15 Subpart B, Class<br>B(SDoC), ANSI C63.4 -2014 | Conducted disturbance<br>at mains terminals               |
| PASS      | 工机检测                 | FCC 47 CFR Part 15 Subpart B, Class<br>B(SDoC), ANSI C63.4 -2014 | Radiated disturbance                                      |
| Р         | 立m<br>位派<br>Loo Test | FCC 47 CFR Part 15 Subpart B, Class<br>B(SDoC), ANSI C63.4 -2014 | Radiated disturbance<br>N/A is an abbreviation for Not Ap |

| Test mode:                        |                                          |                    |
|-----------------------------------|------------------------------------------|--------------------|
| Mode 1                            | Full Load                                | Record             |
| ***Note: All test modes were test | ted, but we only recorded the worst case | se in this report. |









District, Shenzhen, Guangdong, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity



| Highest internal frequency (Fx) | Highest measured frequency              |
|---------------------------------|-----------------------------------------|
| Fx ≤1.705 MHz                   | 30 MHz                                  |
| 1.705 MHz < Fx ≤ 108 MHz        | 1 GHz                                   |
| 108 MHz < Fx ≤ 500 MHz          | 2 GHz                                   |
| 500 MHz < Fx ≤ 1000 MHz         | 5 GHz                                   |
| Fx > 1 GHz                      | 5 $\times$ Fx up to a maximum of 40 GHz |

# 2.2. Support equipment List

| Name    | Manufacturers | M/N | S/N       |
|---------|---------------|-----|-----------|
| resting | I I Minesting |     | Thursding |

## 2.3. Description of Test Facility

Site Description EMC Lab.

: NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

## 2.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.





### 2.5. Measurement Uncertainty

| Test                  | Parameters                                              | Expanded<br>Uncertainty<br>(Ulab) | Expanded<br>Uncertainty<br>(Ucispr) |
|-----------------------|---------------------------------------------------------|-----------------------------------|-------------------------------------|
| Conducted<br>Emission | Level accuracy<br>(9kHz to 150kHz)<br>(150kHz to 30MHz) | ± 2.63 dB<br>± 2.35 dB            | ± 3.8 dB<br>± 3.4 dB                |
| Radiated Emission     | Level accuracy<br>(9kHz to 30MHz)                       | ± 3.68 dB                         | N/A                                 |
| Radiated Emission     | Level accuracy<br>(30MHz to 1000MHz)                    | ± 3.48 dB                         | ± 5.3 dB                            |
| Radiated Emission     | Level accuracy<br>(above 1000MHz)                       | $\pm$ 3.90 dB                     | ± 5.2 dB                            |

(1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

(2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

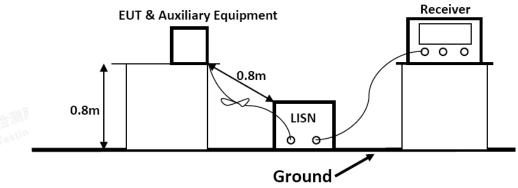








# 3. TEST RESULTS


# 3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT

### 3.1.1. Test Equipment

#### The following test equipments are used during the power line conducted measurement:

| Item | Equipment         | Manufacturer | Model No. | Serial No. | Cal Date   | Due Date   |
|------|-------------------|--------------|-----------|------------|------------|------------|
| 1    | EMI Test Software | Farad        | EZ        | /          | N/A        | N/A        |
| 2    | EMI Test Receiver | R&S          | ESR3      | 102312     | 2022-02-18 | 2023-02-17 |
| 3    | Artificial Mains  | R&S          | ENV216    | 101288     | 2022-06-16 | 2023-06-15 |
| 4    | Pulse Limiter     | R&S          | ESH3-Z2   | 102750-NB  | 2022-08-17 | 2023-08-16 |

### 3.1.2.Block Diagram of Test Setup





### 3.1.3.Test Standard

Power Line Conducted Emission Limits

|      | Frequenc | ÿ     |                  | Limit (dBµV)  |
|------|----------|-------|------------------|---------------|
|      | (MHz)    |       | Quasi-peak Level | Average Level |
| 0.15 | ~        | 0.50  | 79               | 66            |
| 0.50 | 12 m~    | 30.00 | 73               | 60            |

NOTE1-The lower limit shall apply at the transition frequencies. NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

### 3.1.4.EUT Configuration on Test

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.





Page 11 of 25

- 3.1.5. Operating Condition of EUT
  - 3.1.5.1.Setup the EUT as shown on Section 3.1.2
  - 3.1.5.2. Turn on the power of all equipments.
  - 3.1.5.3.Let the EUT work in measuring Mode 1 and measure it.

#### 3.1.6.Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement.

The bandwidth of the test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated 3.1.7.Test Results



The test result please refer to the next page.





Report No.: LCSA120922075E

|                   | t Moo     |                      |               |                |              | and the        |               | Test Mode    |             |              |              | Mode 1 |        |          | 位温    |         |           |          |
|-------------------|-----------|----------------------|---------------|----------------|--------------|----------------|---------------|--------------|-------------|--------------|--------------|--------|--------|----------|-------|---------|-----------|----------|
| Env               | ironr     | nental (             | Conditio      | ons            | 24.5℃, 53.1° |                | 3.1% RH       |              | Test Er     |              | est Engineer |        | r      | Hy L     |       |         | LC3       | 510      |
| Pol               |           |                      |               |                | Line         |                |               |              | Test        | Vo           | Ita          | ge     |        | AC       | 120   | )V/6    | 60Hz      | <u>.</u> |
|                   | 90.0      | dBuV                 |               |                |              |                |               |              |             |              |              |        |        |          |       |         |           |          |
|                   |           |                      |               |                |              |                |               |              |             |              |              |        |        |          |       |         | 7         |          |
|                   | 80        |                      |               | ┥┼             |              |                |               |              |             | F            | CC P/        | (RT 1) | 5A Co  | nduction | (QF)  |         | -         |          |
|                   | 70        |                      |               |                |              |                |               |              |             |              | +            |        |        |          |       |         | -         |          |
|                   | 60        |                      |               |                |              |                |               |              |             | F            | CC 94        | IRT 1  | 5A Con | duction  | (AVG) |         |           |          |
|                   |           |                      |               |                |              |                |               |              |             |              |              |        |        |          |       |         |           |          |
|                   | 50        | *                    | 3             |                |              |                |               |              |             |              |              |        |        |          |       |         | 1         |          |
|                   | 40        | $+\gamma$ $\sim$ $m$ | ma A          |                |              | 5              |               |              | 7           |              |              | M      | A      | . John   | Ĵ     | hhi d   | -         |          |
|                   | 30        |                      | VI ~ ~ / W    | Maderine       | Nurthall     | ntralination   | www.          | hannallhan   |             | wind         | nt Marr      |        |        | 1. Marth | ψĤ    | n who h | -         |          |
|                   | 20        | NAM.                 | NAMEN IN      | 5 Mary         | Nor We       | May May Marine | eportunity.   | Annaputanya  | mar hand    | have         | mark         | T I    | 14     | A        | Л     | W.A.    | V<br>peak |          |
|                   |           |                      |               |                |              |                |               |              |             |              |              |        |        | NW YP    | *     |         | AVG       |          |
|                   | 10        |                      |               |                |              |                |               |              |             | $ \uparrow $ |              |        |        |          |       |         |           |          |
|                   | 0         |                      |               |                |              |                |               |              |             |              | +            | ┼╢     |        |          | +     |         | -         |          |
|                   | -10<br>0. | 150                  |               | 0.500          | 0.800        |                | (МН           | z)           |             | 5.000        |              |        |        |          |       |         | 30.000    |          |
|                   |           |                      | Reading       | Correc         |              | asure-         |               |              |             |              |              |        |        |          |       |         |           |          |
| No                | . Mk.     | Freq.                | Level         | Facto          |              | ment           |               | Margin       | Data        |              | 0.0          |        |        |          |       |         |           | o<br>A   |
| 1                 |           | MHz<br>0.1556        | dBuV<br>27.14 | dB<br>19.63    |              | 3u∨<br>.77     | dBu∨<br>79.00 | dB<br>-32.23 | Detec<br>QF |              | Cor          | nmen   | τ      |          |       |         |           |          |
| -2                |           | 0.1550               | 10.26         | 19.63          |              |                | 66.00         | -36.11       | AV          |              |              |        |        |          |       |         |           |          |
| - 2               |           | 0.4156               | 24.67         | 19.63          |              |                | 79.00         | -34.70       | QF          |              |              |        |        |          |       |         |           |          |
| 4                 |           | 0.4201               | 16.45         | 19.63          |              |                | 66.00         | -29.92       | AV          |              |              |        |        |          |       |         |           |          |
| 5                 |           | 1.3336               | 15.66         | 19.66          | 35           | .32            | 73.00         | -37.68       | QF          | 2            |              |        |        |          |       |         |           |          |
|                   |           | 1.3471               | 4.23          | 19.66          | 23           | .89            | 60.00         | -36.11       | AV          | G            |              |        |        |          |       |         |           |          |
| 6                 |           | 4.6681               | 16.69         | 19.70          | 36           | .39            | 73.00         | -36.61       | QF          | D            |              |        |        |          |       |         |           |          |
| 6<br>7            |           |                      |               | 40.70          | 24           | .52            | 60.00         | -35.48       | AV          |              |              |        |        |          |       |         |           |          |
| 7                 |           | 4.6906               | 4.82          | 19.70          |              |                |               | 22.44        | QF          |              |              |        |        |          |       |         |           |          |
| 7<br>8<br>9       |           | 9.1411               | 20.77         | 19.82          |              |                | 73.00         | -32.41       |             |              |              |        |        |          |       |         |           |          |
| 7<br>8<br>9<br>10 |           | 9.1411<br>9.3076     | 20.77<br>6.79 | 19.82<br>19.83 | 26           | .62            | 60.00         | -33.38       | AV          | G            |              |        |        |          |       |         |           |          |
| 7<br>8<br>9       |           | 9.1411               | 20.77         | 19.82          | 26<br>41     | .62<br>.66     |               |              |             | G            |              |        |        |          |       |         |           |          |





Report No.: LCSA120922075E

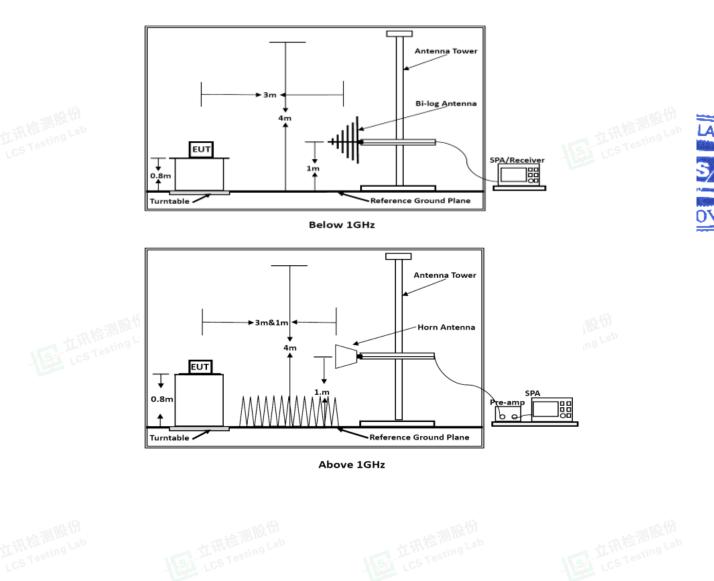
ING

| Fest Model               | RGB20X-POE-TLY                                                                                         | Test Mode        | Mode 1          |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------|------------------|-----------------|--|--|
| Environmental Conditions | 3 24.5℃, 53.1% RH                                                                                      | Test Engineer    | Hy Luo          |  |  |
| Pol                      | Neutral                                                                                                | Test Voltage     | AC 120V/60Hz    |  |  |
| 90.0 dBuV                |                                                                                                        |                  |                 |  |  |
|                          |                                                                                                        |                  |                 |  |  |
| 80                       |                                                                                                        | FCC PART 15A     | Conduction(QF)  |  |  |
| 70                       |                                                                                                        |                  | Conduction(AV6) |  |  |
| 60                       |                                                                                                        |                  | conduction(476) |  |  |
| 50                       |                                                                                                        |                  |                 |  |  |
| 40                       |                                                                                                        |                  |                 |  |  |
| 30 2 WMMM                | when we are the ter my mound with the                                                                  | And Arman B      | -WWWWWWWWW      |  |  |
| Mr. Marmy Vr.            | way way and way and                                                | www.k. Manuar M  | M NO MUL        |  |  |
| 20                       |                                                                                                        |                  | Peak            |  |  |
| 10                       |                                                                                                        |                  | ™AVG            |  |  |
| 0                        |                                                                                                        |                  |                 |  |  |
| -10 0.150 0.50           | 0 0.800 (MHz)                                                                                          | 5.000            | 30.000          |  |  |
|                          | and RE (9)                                                                                             | stads            |                 |  |  |
|                          | correct Measure-<br>Factor ment Limit Marg                                                             | in               |                 |  |  |
| MHz dBuV                 | dB dBuV dBuV dB                                                                                        | Detector Comment |                 |  |  |
| 1 0.1668 24.41 1         | 9.63 44.04 79.00 -34.9                                                                                 | 96 QP            | <i>\</i> [      |  |  |
| 2 0.1694 9.20 1          | 9.63 28.83 66.00 -37.                                                                                  | 17 AVG           | · · · · · ·     |  |  |
| 3 0.4066 24.95 1         | 9.63 44.58 79.00 -34.4                                                                                 | 42 QP            |                 |  |  |
|                          | 9.63 36.59 66.00 -29.4                                                                                 |                  |                 |  |  |
|                          | 9.80 40.78 73.00 -32.2                                                                                 |                  |                 |  |  |
|                          | 9.80 26.02 60.00 -33.9                                                                                 |                  |                 |  |  |
|                          | 9.85 44.53 73.00 -28.4                                                                                 |                  |                 |  |  |
|                          | 9.85 30.11 60.00 -29.8                                                                                 |                  |                 |  |  |
| 9 15.2881 22.96 1        | 9.88         42.84         73.00         -30.           9.90         22.39         60.00         -37.0 |                  |                 |  |  |
| 10 15 4051 2 40 4        | a.au zz.aa 00.00 -3/.                                                                                  |                  |                 |  |  |
|                          | 20.19 42.29 73.00 -30.7                                                                                |                  |                 |  |  |

Note: Pre-Scan all mode, Thus record worse case mode result in this report.






### 3.2. Radiated emission Measurement

### 3.2.1. Test Equipment

The following test equipments are used during the radiated emission measurement:

| Item | Equipment                 | Manufacturer    | Model No.  | Serial No. | Cal Date   | Due Date   |
|------|---------------------------|-----------------|------------|------------|------------|------------|
| 1    | EMI Test Software         | AUDIX           | E3         | /          | N/A        | N/A        |
| 2    | By-log Antenna            | SCHWARZBEC<br>K | VULB9163   | 9163-470   | 2021-09-12 | 2024-09-11 |
| 3    | Horn Antenna              | SCHWARZBEC<br>K | BBHA 9120D | 9120D-1925 | 2021-09-05 | 2024-09-04 |
| 4    | EMI Test Receiver         | R&S             | ESR3       | 102311     | 2022-08-17 | 2023-08-16 |
| 5    | Broadband<br>Preamplifier | /               | BP-01M18G  | P190501    | 2022-06-16 | 2023-06-15 |

### 3.2.2. Block Diagram of Test Setup







#### 3.2.3. Radiated Emission Limit

| Limits for Radiated Disturbance Below 1GHz                                |          |                       |               |  |  |  |
|---------------------------------------------------------------------------|----------|-----------------------|---------------|--|--|--|
| FREQUENCY                                                                 | DISTANCE | FIELD STRENGTHS LIMIT |               |  |  |  |
| MHz                                                                       | Meters   | μV/m                  | dB(µV)/m      |  |  |  |
| 30 ~ 88                                                                   | 3        | 100                   | 50            |  |  |  |
| 88 ~ 216                                                                  | 3        | 150                   | 53.5          |  |  |  |
| 216 ~ 960                                                                 | 3        | 200                   | 56            |  |  |  |
| 960 ~ 1000                                                                | 3        | 500                   | 64            |  |  |  |
| Remark: (1) Emission level (dB) $\mu$ V = 20 log Emission level $\mu$ V/m |          |                       |               |  |  |  |
| (2) The smaller limit shall apply at the cross point between two          |          |                       |               |  |  |  |
| frequency bands.                                                          |          |                       |               |  |  |  |
| (3) Distance is the distance in meters between the measuring              |          |                       |               |  |  |  |
| instrument, antenna and the closest point of any part of the              |          |                       |               |  |  |  |
| device or system.                                                         |          |                       |               |  |  |  |
| Limits for Radiated Emission Above 1GHz                                   |          |                       |               |  |  |  |
| Frequency                                                                 | Distance | Peak Limit            | Average Limit |  |  |  |
| (MHz)                                                                     | (Meters) | (dBµV/m)              | (dBµV/m)      |  |  |  |
| Above 1000                                                                | 3        | 74                    | 54            |  |  |  |
| ***Note: The lower limit applies at the transition frequency.             |          |                       |               |  |  |  |
|                                                                           |          |                       |               |  |  |  |

#### 3.2.4. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

#### 3.2.5. Operating Condition of EUT

3.2.5.1.Setup the EUT as shown in Section 3.2.2.3.2.5.2.Let the EUT work in test Mode 1 and measure it.

### 3.2.6. Test Procedure

EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.





2

### 3.2.7. Measuring Instruments and Setting

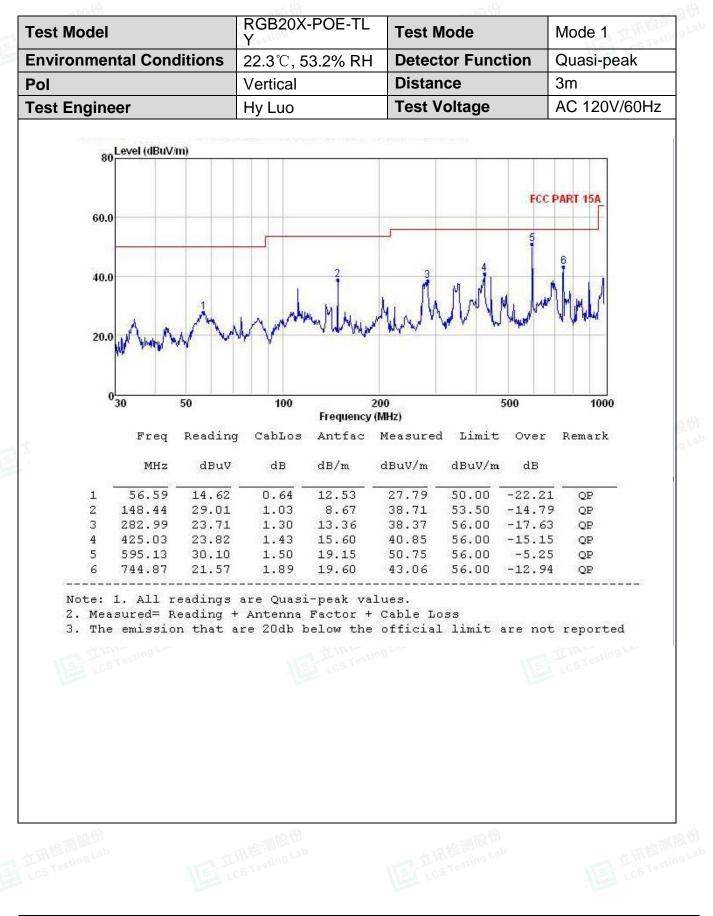
Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver

| Setting                                    |  |  |
|--------------------------------------------|--|--|
| Auto                                       |  |  |
| 9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG  |  |  |
| 150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG |  |  |
| 30MHz~1000MHz / RB/VB 120kHz/1MHz for QP   |  |  |
|                                            |  |  |

| the mostling                              | The solution of the solution                      |
|-------------------------------------------|---------------------------------------------------|
| Spectrum Parameter                        | Setting                                           |
| Attenuation                               | Auto                                              |
| Start Frequency                           | 1000 MHz                                          |
| Stop Frequency                            | 10 <sup>th</sup> carrier harmonic                 |
| RB / VB (Emission in restricted band)     | 1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average |
| RB / VB (Emission in non-restricted band) | 1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average |

The frequency range from 30MHz to 1000MHz and above 1000MHz is checked.

3.2.8. Radiated Emission Noise Measurement Result


### PASS.

The scanning waveforms please refer to the next page.



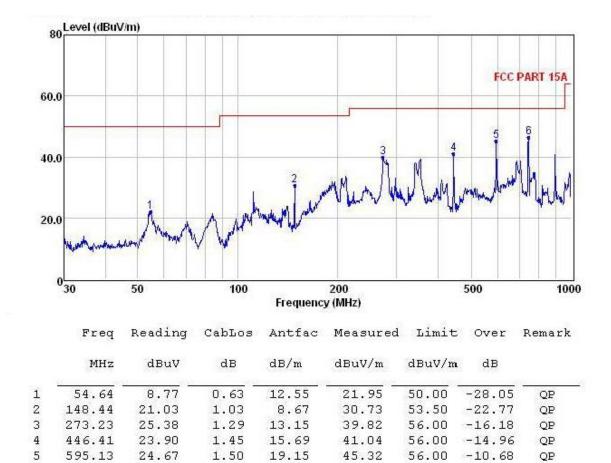


Report No.: LCSA120922075E








Report No.: LCSA120922075E

-9.61

QP

56.00

| RGB20X-POE-TLY  | Test Mode                     | Mode 1                                              |
|-----------------|-------------------------------|-----------------------------------------------------|
| 22.3℃, 53.2% RH | <b>Detector Function</b>      | Quasi-peak                                          |
| Horizontal      | Distance                      | 3m                                                  |
| Hy Luo          | Test Voltage                  | AC 120V/60Hz                                        |
|                 | 22.3℃, 53.2% RH<br>Horizontal | 22.3°C, 53.2% RHDetector FunctionHorizontalDistance |



Note: 1. All readings are Quasi-peak values.

24.90

2. Measured= Reading + Antenna Factor + Cable Loss

1.89

3. The emission that are 20db below the official limit are not reported

Note: Pre-Scan all mode, Thus record worse case mode result in this report.

46.39

19.60

Remark: For above 1000MHz, Because the emission it too low to be reported.



6

744.87



4. PHOTOGRAPH



Photo of Radiated emission Measurement





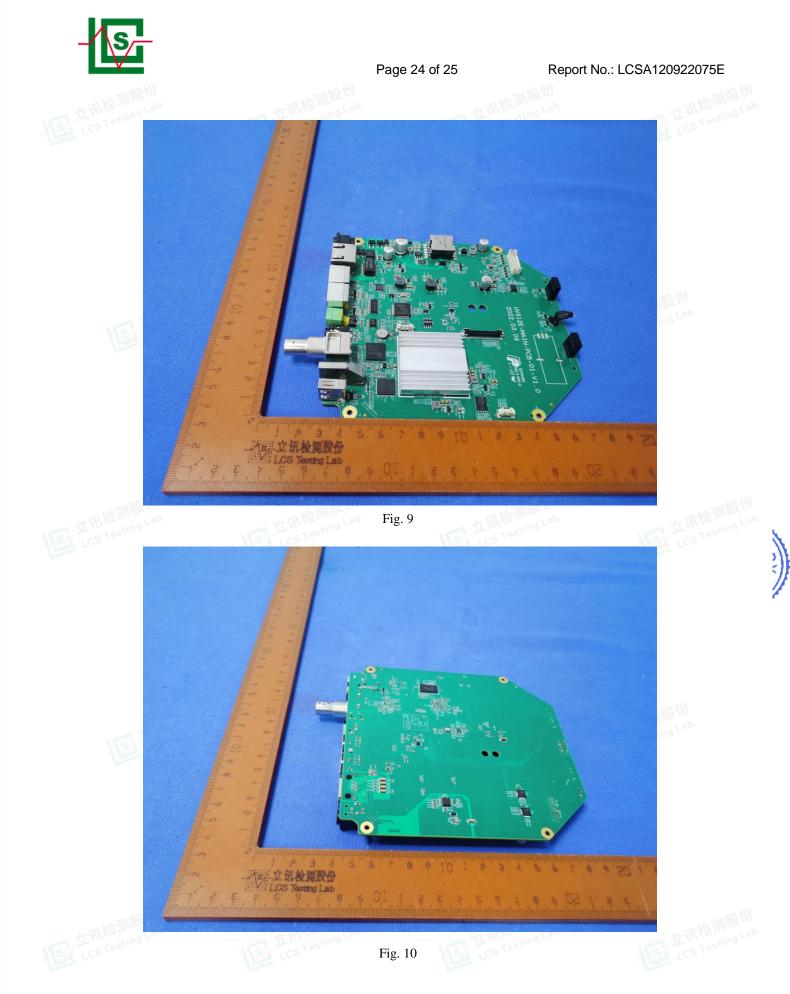
S 5

# 5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT





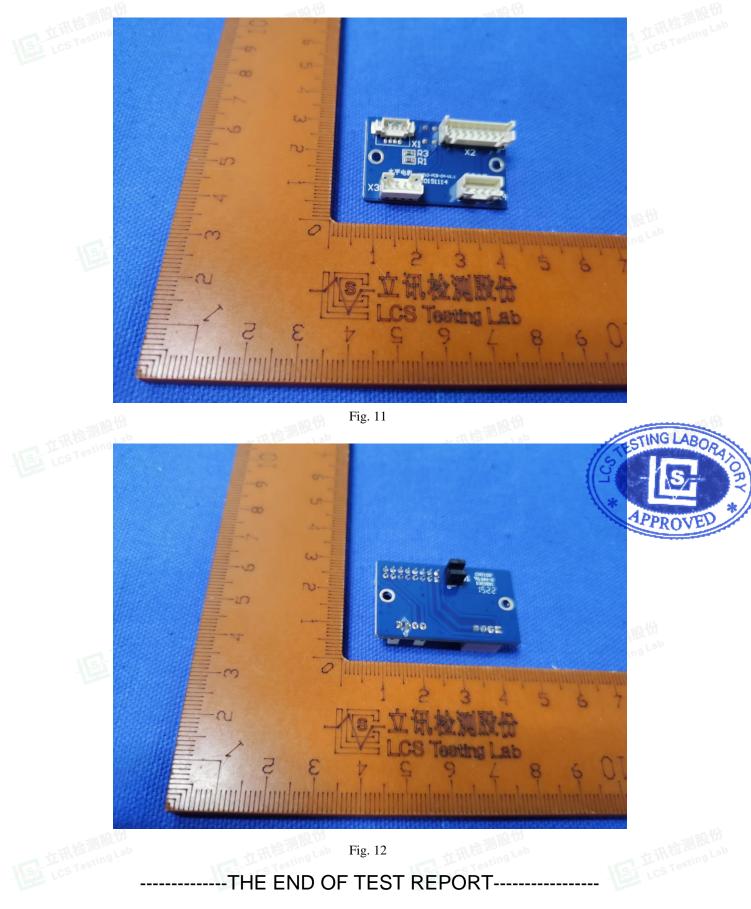

















#### Page 25 of 25



